The generator matrix

 1  0  1  1  1  X  1  1  2  1  1  0  1  1 X+2  1  1  2  1  1 X+2  1  1  X  1  1  2  1  1  0  1  1  X  1  1  0  1  1 X+2  1  1 X+2  1  1  2  1  1  X  X  X  2  0  1  1  1  1  X  0  X  2  X  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  X  X  2  0  X  2  2  0  0  X  1
 0  1  1  2 X+1  1  X  3  1  0  1  1 X+2 X+3  1  2  3  1  X X+1  1 X+2 X+3  1  2 X+3  1  0 X+1  1 X+2  3  1  2 X+3  1  X  1  1  X  1  1  0 X+1  1 X+2  3  1  2  X  X  0  X  0  2 X+2 X+2  X  2  0  0 X+1  3 X+1  3 X+2 X+2 X+3  1 X+3  1  2  2  0  0  X  X X+3  1 X+3  1 X+1  3 X+1  3  0  X  X  2  X  1  1  1  1 X+2  0
 0  0  X X+2  2 X+2  X  0  X  2 X+2  2  0  X  0  X  2 X+2 X+2  0  2  2 X+2  X  2  2  2 X+2 X+2  X X+2 X+2  0  0  0 X+2  2  2 X+2  0  0  X  X  X  0  X  X  2  X  X  X  X  X  2  0 X+2 X+2  X X+2  X  2  0  0  2  2  0  2  2  2  0  0  X X+2 X+2  X X+2  X  X X+2 X+2  X X+2  X  X X+2 X+2 X+2 X+2  X  0  X X+2 X+2  X  2  0

generates a code of length 96 over Z4[X]/(X^2+2,2X) who�s minimum homogenous weight is 94.

Homogenous weight enumerator: w(x)=1x^0+52x^94+56x^95+84x^96+38x^98+8x^100+4x^102+8x^103+2x^104+1x^106+1x^112+1x^122

The gray image is a code over GF(2) with n=384, k=8 and d=188.
This code was found by Heurico 1.13 in 0.453 seconds.